We offer multiple advanced research microscopes that are available for imaging-based experiments. We also provide a selection of sophisticated software packages that can be utilized for image analysis. Please inquire if you have specific questions about any of these instruments or about gaining access to them. We are happy to provide training as well as to consult with users about their experimental and analysis needs. New users must receive official training and sign a user agreement prior to gaining access to the facility's tools or its reservation systems.
Instrumentation:
The Advanced Imaging Core hosts three confocal laser scanning microscopes from Zeiss. All three microscopes offer DIC imaging capabilities and popular objective magnifications (10X, 20X, 40X, 63X). The inverted LSM 700 offers four excitation wavelengths (405, 488, 555, 639 nm), while our upright LSM 710 has 7 laser lines (405, 458, 488, 514, 561, 594, 633), 2 PMT’s, and a 32-channel detector. The facility also has a Zeiss LSM 980 with Airyscan, which offers high resolution, improved sensitivity, and capabilities for live cell imaging. Finally, the AVT- Advanced Imaging Core manages a Zeiss PALM CombiSystem, which enables users to perform microdissection and micromanipulation of samples on standard glass slides within a single microscope. These microscopes can be found in rooms 407, 332, and 312 of the Criss Complex.
The Advanced Imaging team also manages several specialized microscopes associated with CU-IBIF, Creighton University’s Integrated Biomedical Imaging Facility, located in rooms 324, 325, 326C, 376, and 382A of the Criss Complex.
First is an inverted Nikon Ti-2 confocal microscope with a Yokogawa spinning disk, a Hamamatsu Orca Flash camera, and an incubated stage. This microscope is capable of fast full-frame imaging, and it can perform Z-stacks at rates 10 times faster than a typical point scanning confocal. This microscope is equipped with Live Super-Resolution, which enables the high-speed imaging that is required for live cell experiments. It is also an ideal choice for extended time-lapse imaging experiments.
Next is an upright Leica SP8 confocal microscope that is suitable for live animal imaging and can support accessories for electrophysiology measurements. In addition to visible-range lasers, it has a tunable, pulsed, near-infrared Ti:S laser for multiphoton excitation of UV/Visible fluorophores and second harmonic imaging. Non-descanned Super HyD detectors and a Becker and Hickl SPC 830 Time Correlated single photon counting system enable fluorescence lifetime imaging, fluorescence correlations spectroscopy, and lifetime-based FRET techniques. The Leica has spectral detectors that enable spectral imaging.
Third is a home-built Total-Internal Reflection Fluorescence Microscope. This instrument offers a through-the-prism beam path to reduce noise from scattered laser light, and it incorporates three objective options (10X, 20X, 40X) and four laser lines (405, 488, 552, and 647 nm). Images are captured with an Andor iXon EMCCD scientific camera.
The team also manages an inverted ImageXpress Micro 4 widefield microscope from Molecular Devices, equipped with an incubation chamber. The ImageXpress enables users to conduct preprogrammed experiments over extended time periods at high-throughput. In addition, CU-IBIF is also the home to two other widefield microscopes for basic imaging needs.
Software Packages Available:
The Advanced Imaging Core provides a selection of analysis tools for the THC and users of our facility. We have two workstations that run the Imaris Microscopy Image Analysis software, which is helpful in processing 3D and 4D images. A standalone workstation is available for utilizing Nikon’s NIS Elements and Leica’s LAS X software. Users interested in knowing more about these software packages and accessing them are asked to reach out to the team. We are happy to discuss your image processing needs with you, and we have experience in using a variety of other programs as well for analysis and processing, including ImageJ, MATLAB, Python, and R.