

We know children.

Neonatal Emergencies and Transport

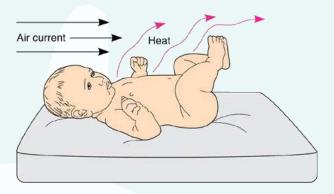
We know children.

Relative Anatomy and Physiology

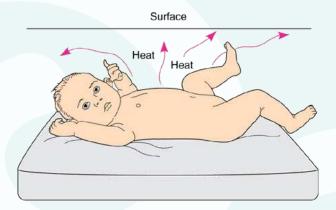
Physiology of Thermoregulation

- Neonate at significant risk of hypothermia
 - Ratio of neonatal body surface area to volume is four times that of an adult
 - Neonate has less adipose tissue than adult
 - Thermogenesis in neonate only one and a half as high as adult
 - Muscle tone is immature in neonate
 - Neonate cannot shiver effectively enough to generate heat

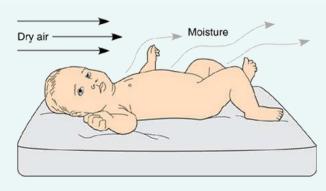
Heat Loss in the Neonate

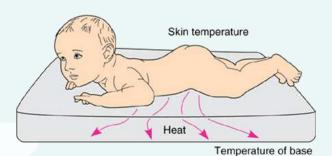

We know children.

Results from:


- Evaporation
 - Most of heat loss, especially in moments immediately after birth
- Convection
 - Depends on birthing environment
 - When care providers are comfortable in the room, it is too cold for the neonate
- Conduction
- Radiation
 - Room's ambient temperature should be as close to core temperature as possible

Heat Loss in the Neonate




Convection

Radiation

Evaporation

Conduction

Children's HOSPITAL & MEDICAL CENTER

Glucose Requirements

- Newborns at significant risk of acute hypoglycemia due to:
 - Poor glucose stores
 - Inability to stimulate the immature neonatal liver to release glucose
 - Increased metabolism that uses large quantities of available glucose
 - Assess neonatal glucose levels within 1 to 2 hours after birth
 - Reassess every 30 minutes to 1 hour thereafter until glucose levels are normal
 - Neonate blood glucose levels (BGLs) should be maintained above 70–80 mg/dL

Signs and Symptoms of Hypoglycemia

- Twitching, seizure activity, eye rolling
- Muscular hypotonia (limpness)
- High-pitched cry
- Respiratory apnea, irregular respirations

Management of Hypoglycemia

We know children.

 Administer 10 percent dextrose as needed at 80ml/kg/day

Airway Anatomy and Physiology

- Unique differences between neonatal and adult airway anatomy and physiology
 - Neonatal tongue larger compared to the oropharynx
 - Little room for airway edema
 - Increased likelihood of airway obstruction in depressed neonate
 - Neonatal trachea more pliable, narrow
 - Airway obstruction from:
 - Hyperextension, hyperflexion kinking
 - Edema

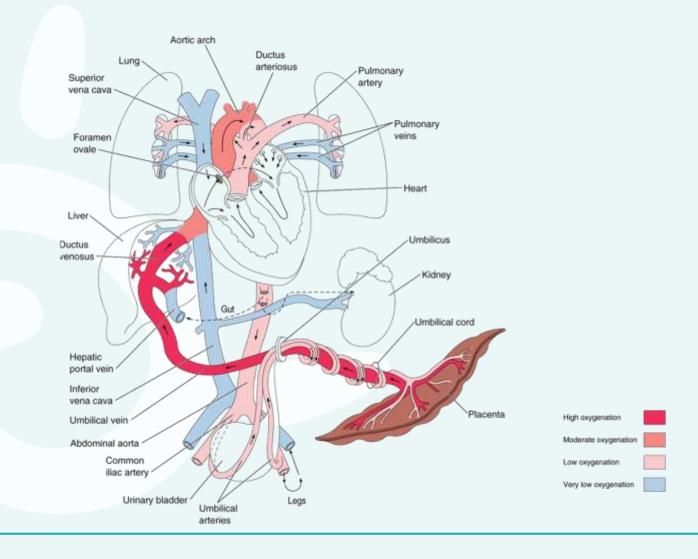
Airway Anatomy and Physiology

- Neonatal epiglottis is large and more Ushaped or oblong, floppy from incomplete cartilaginous support
- Use of straight versus curved blade during laryngoscopy
- Neonatal larynx more cephalad, anterior
- Level of first or second cervical vertebrae
- Harder to achieve single plane view needed for optimal orotracheal intubation conditions

- Many differences in neonatal pulmonary anatomy and physiology compared to the adult
- Bones in neonatal thoracic cavity not fully calcified
 - Flexible
- Neonatal ribs are more horizontal than they are rounded
 - Little leverage to increase the anterior and posterior diameter of the chest
 - Inability to provide the degree of lift needed to increase the volume of the chest cavity upon inspiration

- Poorly developed accessory muscles
 - Cause diaphragmatic breathing
- Neonatal sternum very pliable
 - Contributes to inability to create a strong negative intrathoracic pressure
 - Inhibits efficiency of inspiratory effort

- Neonates have diminished pulmonary reserve capacity
 - Heart larger, ribs and sternum fail to adequately support the lungs
 - Less space for lung expansion compared to adults
 - More rapid development of hypoxemia and hypercapnia
- Neonates are primarily abdominal breathers
 - Rely heavily on diaphragmatic motion to breathe
 - Overcrowding of the neonatal abdominal cavity a significant problem
 - Negatively affects the neonate's compensatory ventilation mechanisms
 - Limits diaphragmatic excursion secondary to increased abdominal pressure



- Neonates consume twice the oxygen of adults
 - Lower pulmonary reserve capacity coupled with a higher metabolic demand for oxygen predisposes the neonate to hypoxemia

- Several differences between adult and neonatal cardiovascular systems
- While still in utero, the fetus receives its oxygen through the placenta
 - Disturbances to alveolar ventilation and gas exchange following birth must be dealt with immediately

- Neonatal heart can usually only increase rate to improve cardiac output
 - Cannot increase contractile force
 - Cardiac output drastically reduced with bradycardia

- Most of physiologic change that occurs with the shift from intrauterine to extrauterine life occurs in the first few minutes after delivery
 - Clamping of umbilical cord moves circulation from placenta to pulmonary system
 - Interruption of low-resistance, placental blood flow from the umbilical cord increases systemic vascular resistance (SVR)
 - Increased SVR closes the ductus venosus
 - Closure of ductus venosus causes renal perfusion

- Neonate's first breaths expands the lungs
 - Lung expansion reduces pulmonary vascular resistance
 - Reduced pulmonary vascular resistance:
 - Increases pulmonary blood flow
 - Reduces pulmonary artery pressures
 - Left side of heart assumes higher pressures than right
 - Closes the foramen ovale
 - Closes the ductus arteriosis
 - Occurs in first hours to weeks after birth

General Pathophysiology: Pulmonary

- Assessment of respiratory distress
 - Etiology of respiratory compromise may not be readily identifiable
 - First goal is to replace any lost function of the airway or breathing components
 - Once airway or breathing insult is corrected, can identify potential causes of the hemodynamic and/or respiratory compromise
 - Goals in managing respiratory compromise in the critical care environment are to:
 - » Identify a set of causes and
 - » Treat the patient based on the most likely etiology

Respiratory Distress, Failure, and Arrest

- Must use precise terms when describing respiratory distress, respiratory failure, and respiratory arrest
 - Distinction between the three dictates the management of the acutely ill neonate
 - Respiratory distress
 - Maintains the ability to compensate
 - Respiratory failure
 - Has exhausted compensatory mechanisms
 - Respiratory arrest
 - Patient is apneic

Persistent Pulmonary Hypertension of the Newborn

- Clinical syndrome in which pulmonary vascular resistance is elevated in the presence of changes in pulmonary vessel reactivity
 - Results in sustained fetal circulation
 - Ductus arteriosus and foramen ovale remain open

Persistent Pulmonary Hypertension of the Newborn

- Commonly associated with severe hypoxia, meconium aspiration syndrome, and congenital diaphragmatic hernia
- Clinical presentation mirrors many of the signs and symptoms of congenital heart diseases
 - May be difficult to assess in the aeromedical or ground transport environment

Persistent Pulmonary Hypertension of the Newborn

- Management
 - Maintain oxygenation
 - Give nitric oxide
 - Promotes pulmonary vascular dilation
 - Keeps pulmonary perfusion pressures closer to normal
 - Closes vascular structures
 - Use adenosine, magnesium sulfate as pulmonary vasodilators

Meconium Aspiration Syndrome

- Meconium expelled prematurely in 10 to 15 percent of all deliveries
 - Only 2 to 10 percent will aspirate meconium into lower airways
- Meconium aspiration can obstruct airway and/or may contribute to inactivation of alveolar surfactant
- No known prevention strategies
 - Nasopharyngeal and endotracheal suctioning before delivery of the thoracic cavity may limit meconium aspiration into the lower airways

Meconium Aspiration Syndrome

We know children.

Following delivery

After delivery of the infant, if a great deal of meconium is present, the trachea should be intubated and any residual meconium removed from the lower airway.

Transient Tachypnea of the Newborn (TTN)

- Also known as "wet lung" or "Type II Respiratory Distress Syndrome"
- Self-limiting process
 - Auto-resolves within 48–72 hours from birth
 - Caused by delayed clearing of fluids in the lungs
- Management
 - Ensure adequate oxygenation
 - Give antibiotic therapy until sepsis, pneumonia ruled out

Infant Respiratory Distress Syndrome (IRDS)

- Affects about 10 percent of all preterm infants
 - Rarely seen in full-term infants
- Result of lack of pulmonary surfactant
 - Causes atelectasis
 - Increased work of breathing
 - Ineffective gas exchange
 - Hypoxia, hypercapnia

Courtesy of Carol Harrigan, RNC, MSN, NNP

Infant Respiratory Distress Syndrome (IRDS)

- Signs and symptoms include:
 - Tachypnea, shortness of breath
 - Accessory muscle use, sternal retractions, grunting, nasal flaring
 - Respiratory arrest from muscle fatigue, hypoxemia, and acidosis
- Management
 - Ensure adequate ventilation and oxygenation
 - Administer exogenous surfactant

Congenital Diaphragmatic Hernia

- Complication in which the bowel protrudes into the thoracic cavity through an interruption of the diaphragm
 - Usually the result of congenital abnormality
 - 85 percent of all congenital diaphragmatic hernias occur on left side
 - Mortality rate between 40 and 60 percent
- Herniated abdominal contents prevent full lung expansion in the affected hemithorax
 - Pulmonary compromise ensues

Congenital Diaphragmatic Hernia

- Signs and symptoms
 - Respiratory distress
 - Unequal lung sounds
 - Scaphoid shaped abdomen
- Management
 - Ensure adequate ventilation and oxygenation
 - Insert NG tube
 - Conduct gastric decompression
 - Repair surgically (definitive treatment)
 - General pathophysiology, cardiovascular

Congenital Heart Disease Overview

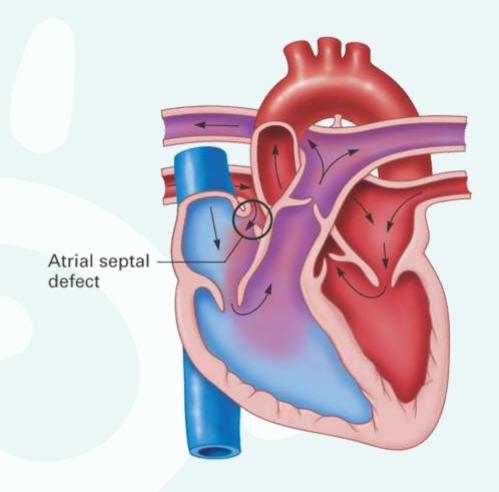
- Incidence of congenital heart disease in the United States is approximately 8 per 1,000 live births
 - About 40,000 neonates born each year with a heart defect
 - Many congenital heart defects are subclinical
 - Defects can cause:
 - Abnormalities in volumes and/or pressures in the atria or ventricles
 - Mixing of venous and arterial blood
 - Inadequate cardiac output and poor systemic perfusion
 - Neonate can have multiple defects at once

Left-to-Right Shunt Defects

- Condition in which oxygenated blood shifts from left to right side of the heart
- Defect is considered acyanotic
 - Higher pressures on left side of heart prevent unoxygenated blood from right side from entering the aorta and systemic circulation

Atrial Septal Defect (ASD)

- Commonly the result of foramen ovale nonclosure
 - "Patent" foramen ovale
 - Oxygenated blood from pulmonary vein enters left atria
 - Higher left atrial pressure compared to right produces volume shift to right side
 - Eventually causes right atrial and ventricular enlargement



Atrial Septal Defect (ASD)

- Signs and symptoms
 - Commonly subclinical
 - Clinical significance related to size of defect
 - Rarely, congestive heart failure might develop
- Management
 - Give supportive care
 - Repair surgically (definitive treatment)

Atrial Septal Defect (ASD)

Ventricular Septal Defect (VSD)

- Defect in ventricular septum allows blood flow between ventricles
 - Can cause:
 - Left-to-right shunting of blood
 - Pulmonary hypertension
 - Changes in pulmonary vascular bed
 - Size of defect determines clinical significance

Small VSD

- Produces a small, left-to-right shunt
- Little pulmonary vascular congestion, chamber enlargement
- More difficult to diagnose

Large VSD

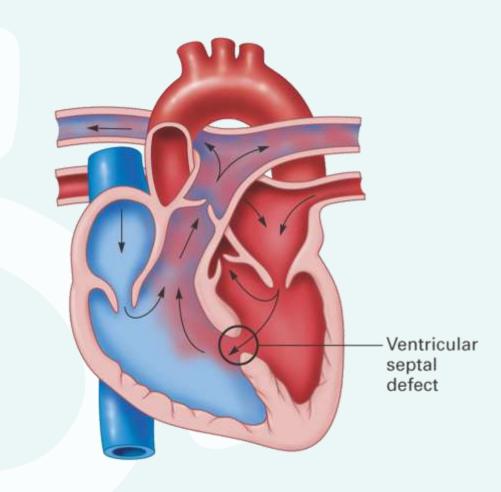
We know children.

- Pulmonary hypertension develops
- Signs of left ventricular overload, congestive heart failure develop
- Can present early or late
 - Early presentation typified by global ventricular enlargement
 - Late presentation typified by equal left-toright and right-to-left shunting/mixing of blood
- Result of equal/near-equal PVR and SVR

Acyanotic

Signs and Symptoms of VSD

- Respiratory distress, fatigue, diaphoresis at feedings
- History of poor weight gain or weight loss
- Congestive heart failure



Management of VSD

- Ensure adequate oxygenation
- Treat congestive heart failure, when present
- Repair surgically (definitive treatment)

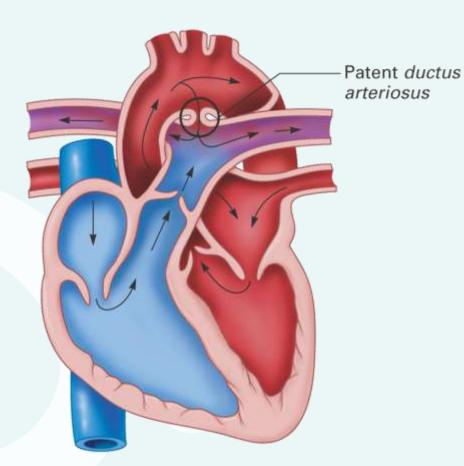
VSD

Patent Ductus Arteriosus (PDA)

We know children.

- Condition characterized by failure of the ductus arteriosus to close after pulmonary circulation has been established
 - PDA allows for flow of blood from aorta to pulmonary artery
 - Causes:
 - Pulmonary hypertension
 - Myocardial hypertrophy
 - Size of defect, amount of blood flow determines clinical significance

Acyanotic


Patent Ductus Arteriosus (PDA)

- Signs and symptoms
 - Difficulty breathing, tachypnea, tachycardia
 - Bounding pulses, widening pulse pressures, fatigue at feedings
- Management
 - Give supportive care
 - Administer aldomethacin
 - Use prostaglandin inhibitor

Patent Ductus Arteriosus (PDA)

Obstructive Defects

We know children.

Overview

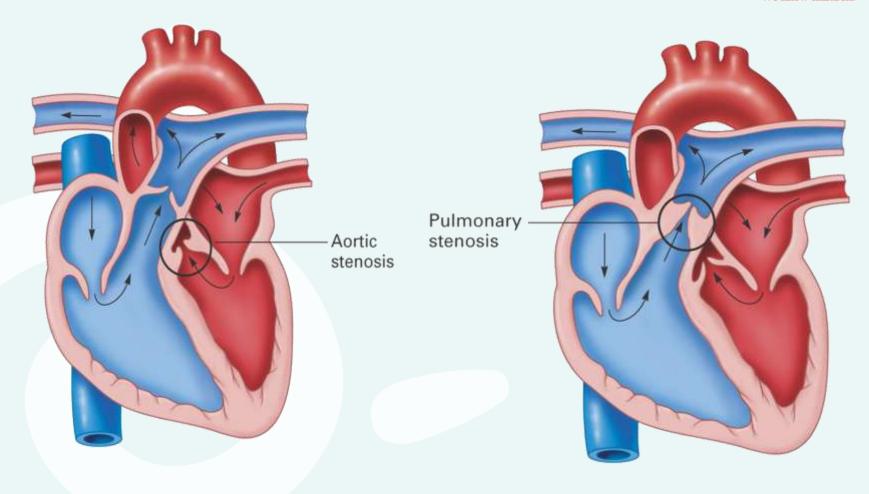
- Complete or partial blockage of blood flow commonly caused by a structural deformity
- Signs and symptoms are secondary to the cardiovascular structures involved

Aortic and Pulmonary Stenosis

We know children.

- Aortic or pulmonary valve narrowed
 - Blood flow impeded
 - Ventricular pressure increased
 - Ventricles enlarged
 - Poststenotic vessel dilation evident
- Signs and symptoms
 - Respiratory distress, tachypnea, tachycardia
 - Weak pulses, hypotension, and fatigue at feedings

Obstructive


Aortic and Pulmonary Stenosis

- Management
 - Give supportive care
 - Conduct oxygenation
 - Proceed with pharmacologic management
 - Undertake balloon angioplasty/valvuloplasty

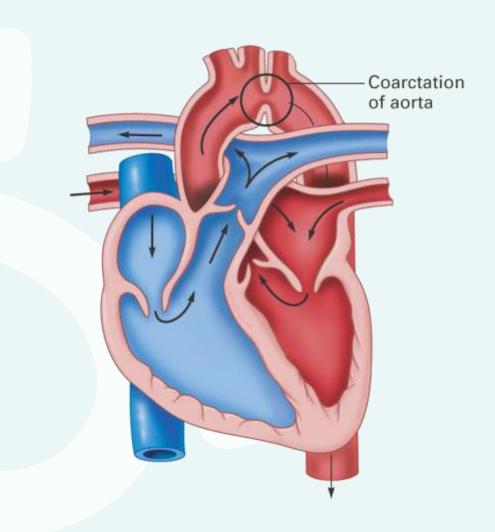
Aortic and Pulmonary Stenosis

We know children.

Obstructive

Coarctation of the Aorta

- Characterized by narrowing of the aorta near the distal aspect of the aortic arch
 - Increased left ventricular pressures
 - Increased left ventricular workload
 - Left ventricular hypertrophy
- Signs and symptoms
 - Tachycardia
 - Bounding pulses in the upper extremities with thready or absent pulses in the lower extremities
 - Fatigue at feedings


Coarctation of the Aorta

- Management
 - Give supportive care
 - Administer prostaglandin
 - Treat congestive heart failure, when present
 - Complete balloon angioplasty/surgical resection (definitive treatment)

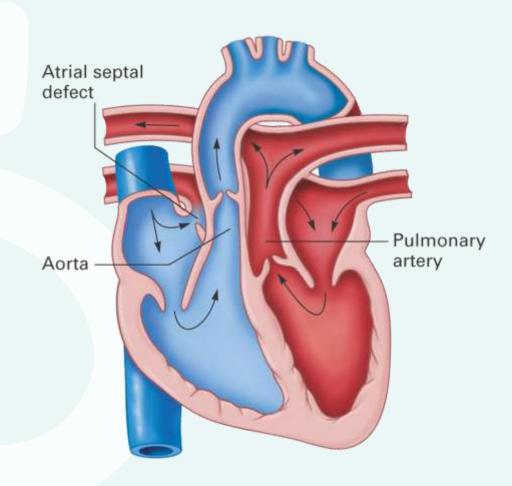
Coarctation of the Aorta

Children's HOSPITAL & MEDICAL CENTER

Cyanotic Defects

- Characterized by poor pulmonary blood flow resulting from one or more of the following:
 - Difficulty in pumping blood out the right side of the heart
 - Greater pressure gradient from right to left side of the heart that shunts blood to left side
 - Returns unoxygenated blood to the left side
 - Blockage of pulmonary blood flow or structural deformity

- Characterized by abnormal positioning of the aorta and pulmonary arteries
 - Pulmonary artery leaves the left ventricle
 - Aorta leaves the right ventricle
 - Creates parallel circulations



- Associated with ASD, VSD, and PDA up to 80 percent of the time and has to be for the patient to survive
 - Without these defects, no intracardiac mixing of oxygenated and deoxygenated blood occurs, child dies due to closed parallel circuits
 - Degree of cyanosis/acidosis depends on number and size of intracardiac and extracardiac shunts

- Signs and symptoms
 - Difficulty breathing, tachypnea, tachycardia
 - Cyanosis
- Management
 - Give supportive care
 - Repair surgically via arterial switch (definitive treatment)

Children's HOSPITAL & MEDICAL CENTER

We know children.

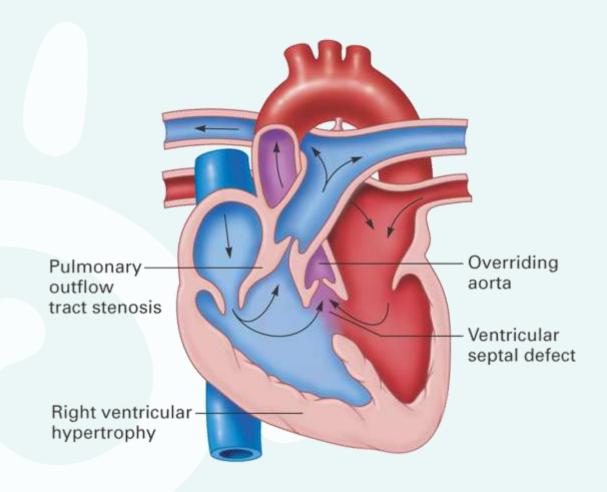
Tetralogy of Fallot

- Condition characterized by four criteria:
 - VSD
 - Pulmonary stenosis
 - Rightward displacement of aorta
 - Overrides the VSD
 - Right ventricular hypertrophy

We know children.

Tetralogy of Fallot

- Degree of cyanosis secondary to mixing of oxygenated/deoxygenated blood determined by degree of pulmonary stenosis
 - Greater the pulmonary stenosis, the greater the right side intraventricular pressure, the greater the right-to-left shunt, the more deoxygenated blood reaching systemic circulation via the aorta


We know children.

Tetralogy of Fallot

- Signs and symptoms
 - Tachypnea, tachycardia
 - Fatigue at feedings
- Management
 - Give supportive care
 - Ensure adequate oxygenation
 - Administer prostaglandin

Tetralogy of Fallot

Transport Guidelines for Congenital Heart Defects

- Ensure patent airway
- Ensure adequate ventilation, oxygenation
- Treat congestive heart failure
- Correct circulatory compromise
 - Conduct fluid volume resuscitation
 - Administer vasopressors
- Keep patient warm

We know children.

General Pathophysiology: Other Neonatal Emergencies

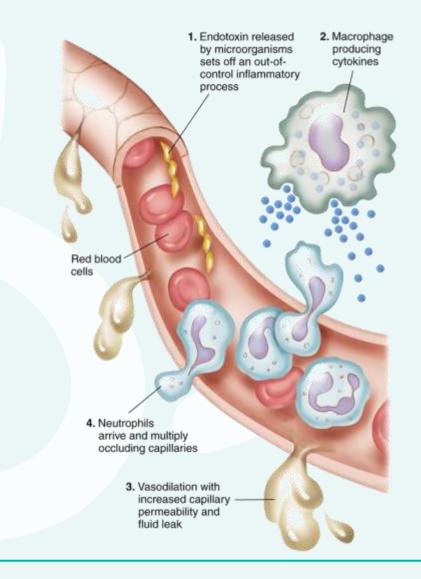
Necrotizing Enterocolitis (NEC)

- Most common serious abdominal emergency in neonates that requires emergency surgical intervention
 - Acute inflammation of the large intestine leading to necrosis of the intestinal mucosa
 - Risk factors include insult to intestinal mucosa and bacterial growth
 - Causative agent has not been identified
 - Risk of sepsis secondary to bowel perforation

Necrotizing Enterocolitis (NEC)

- Signs and symptoms
 - Abdominal distention
 - Decreased or absent bowel sounds
 - Vomiting
 - Bloody diarrhea
 - Lethargy
 - Poor feeding habits
 - Depressed core body temperature

Necrotizing Enterocolitis (NEC)


- Management
 - Give supportive care
 - Keep the patient NPO
 - Insert NG tube and conduct gastric decompression
 - Maintain acid-base and electrolyte balance
 - Maintain IV fluids
 - Administer antibiotic therapy

- Life-threatening infection of the bloodstream resulting in systemic toxicity
 - Often subtle in neonate and may be difficult to distinguish from a noninfectious pathology
 - Maternal gastrointestinal or genital infections are most common etiology
 - Primary site of infection may often be difficult to identify
 - Shock may develop
 - Result of vasodilation secondary to release of bacterial endotoxins
 - Distributive shock

- Signs and symptoms
 - Hypothermia
 - Respiratory distress
 - Pulmonary hypertension
 - Hypoxemia
 - Severe hypoperfusion
 - Disseminated intravascular coagulation (DIC)

- Management
 - Give supportive care
 - Ensure cardiovascular support
 - Administer antibiotic therapy

We know children.

General Neonatal Assessment Findings/Considerations

Skin Color

- Cyanosis commonly found
 - Insignificant when neonate is crying
- Jaundice
 - Result of high serum bilirubin levels
 - Usually resolves without intervention
 - When needed, treat with fluorescent light
 - Blood transfusion needed when fluorescent light treatment fails

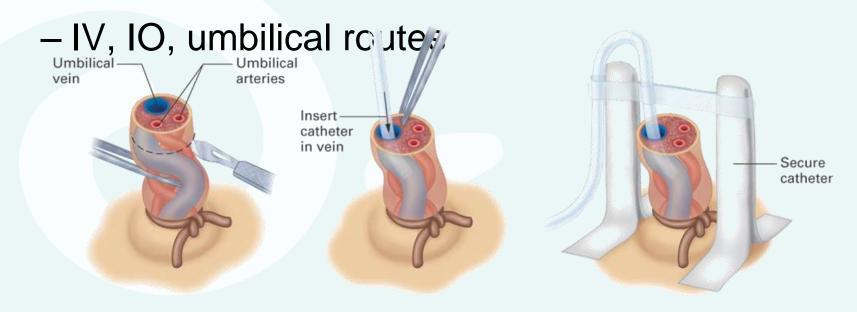
We know children.

Vital Signs

- Neonatal vital signs variable, deviate from "norm"
- Access to reference material advisable
 - Prdiatric Broselow tape
- In addition to respiratory rate, blood pressure, heart rate, consider blood glucose level a vital sign in neonate
 - 70-80 mg/dL considered nonhypoglycemic

We know children.

General Neonatal Considerations


Airway

- Should be secured and maintained as soon as possible
 - RSI less common in adults but should be used when needed
- Accidental extubation most frequent respiratory complication
 - Sedation
 - NMBAs
 - C-collars
 - Lateral immobilization

Vascular Access

- Obtaining vascular access can be difficult even for experienced providers
- Multiple access options should be available

Temperature Regulation

We know children.

Critical, should be consistently ensured during transport

Temperature regulation initially provided by preventing heat loss while promoting

strategies for aggressive

- Before transport use:
 - Radiant warmers
 - Insulated blankets
 - Heated blankets
- During transport:
 - Transport incubator/isollette

Scott and White Hospital and Clinic

Hypoglycemia

- Hypoglycemia should be managed aggressively
 - Use 10 percent dextrose and water
 - Infuse D10W at 80cc/kg/day
 - D25W, D50W administration contraindicated
 - Can cause significant increases in plasma osmolarity
 - Hypernatremia
 - Cerebral edema

Summary

- Common denominator for unexpected deaths in neonates is hypoxia
 - Via infectious diseases, congenital heart disease, pulmonary compromise, other etiologies
 - Neonates can compensate until they are extremely hypoxic
 - High index of suspicion needed to identify developing hypoxia before decompensation
 - Airway and ventilation highest priority
 - Neonates with high metabolism, high oxygen consumption

Summary

- Manage CHD after addressing airway, breathing, and pulmonary function
 - Transport care for the CHD patient is primarily supportive
 - May require significant intervention
- Ability to diagnose specific defects not top concern
 - Critical care practitioner should know how various defects affect normal perfusion
 - Care provider is responsible for staying abreast of common neonatal emergencies and their current standards of care