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Abstract

This paper considers the strategic manipulation of fuzzy choice functions where

both individuals and groups can choose alternatives to various degrees. Past efforts

to model fuzzy choice and strategic manipulation have allowed individual preferences

to be fuzzy but still required groups to select only one alternative (e.g. Abdelaziz,

José and Meddeb [1]; Côrte-Real [14]). Under this new framework, I find, with very

minimal assumptions on fuzzy preferences, strategy-proof fuzzy choice functions satisfy

fuzzy versions of peak-only, weak Paretianism and monotonicity. In addition, the only

type of strategy-proof fuzzy choice function corresponds to the traditional augmented

median rule. Further, I illustrate the implications this framework in the spatial model.

These results are relevant to the manipulation literature, which remains divided as

to whether choice functions can be both non-manipulable and non-dictatorial when

restricting individual preferences to a single-peaked domain (e.g. Mackie [24]; Penn,

Patty and Gailmard [30]). In this context, the paper suggests that social choice can be

both strategy-proof and non-dictatorial if alternatives are chosen to various degrees.
∗I am grateful for the suggestions of John Mordeson, Terry Clark and other participants of the Fuzzy

Mathematics Colloquium at Creighton University.
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1 Strategy-Proofness and Fuzzy Sets

A collective choice function over three or more alternatives that does not incentivize indi-

viduals who misrepresent their true preferences must be dictatorial [19, 34]. It then follows

that voters in collective choice institutions will manipulate the voting procedure to obtain a

more preferred social outcome by misrepresenting their true preferences. Social choice schol-

ars have tried to avoid this conclusion of the Gibbard-Satterthwaite (G-S in what follows)

theorem by relaxing several of its original assumptions. One approach restricts the domain

of individual preferences to single-peaked profiles and finds that the augmented median rule

emerges as a non-manipulable and non-dictatorial choice function [5, 9, 26, ?]. While some

scholars (e.g. Dryzek and List [16]; Mackie [24]) hold that this restriction voids the results

of the G-S theorem, Penn, Gailmard and Patty [30] extend the G-S results to a general case

by demonstrating that even though individuals may possess single-peaked preferences, there

exists opportunities to manipulate the social choice when individuals report false preferences

that violate the natural ordering of the alternatives.

What has remained absent from this debate has been the effects of fuzzy preferences

and fuzzy social choice on G-S’s conclusion. In the fuzzy framework, individauls can prefer

one alternative over another to a certain degree instead of only possessing strict preference

or indifference between the two [4, 29]. The addition of fuzzy preferences then requires the

specification of a fuzzy social choice function that selects some type of outcome. Although

past efforts have explored situations where actors have fuzzy preferences but, as group,

must make exact choices, i.e. where society selects one alternative unequivocally and have

only confirmed the G-S conclusion [1, 14, 37], the strategic manipulation of truly fuzzy

social choice functions, where society chooses alternatives to certain degrees, has yet to be

considered.

The purpose of this paper is to address this lacuna in the manipulation literature. To do

so, it integrates two recent developments in fuzzy social choice theory. First, it considers the

specific fuzzy choice functions proposed by Dasgupta and Deb [15] and Banerjee [4]. These
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choice functions allow a set of individuals to select more than one alternative with varying

degrees of choice. While there exist a significant literature investigating the manipulation of

social choice correspondences that allow multiple alternatives to be selected (e.g. Kelly [22]

and Barberà, Dutta and Sen [6]), the degree to which the group actors select the alternatives

has not been allowed to vary. Second, the paper uses the fuzzy preference framework pro-

posed by Nurmi [28], which employs preference functions instead of preference relations to

describe individual preferences. A preference function, unlike a preference relation, accounts

for an individual’s preference over the set of alternatives instead of over the set of ordered

pairs of alternatives. This approach not only allows for a direct comparison between indi-

vidual preferences and the social choice, but it is also more conducive to empricial testing

and application because it does not require an individual to immediately specify his or her

preference comparing every alternative to another [8, 12, 13].

Under this setup, I characterize fuzzy choice functions and demonstrate that strategy-

proofness implies fuzzy versions of weak Paretianism, peak-only and monotonicity. Further,

strategy-proofness is necessary and sufficient for the augmented median voter rule. These

results suggest that when the social choice is allowed to be fuzzy, there exists a class of

non-manipulable choice functions, which do not replace any type of transitivity or single-

peaked restriction on individual preferences. In addition, I illustrate the model using fuzzy

spatial preferences. The paper proceeds as follows. Section two briefly reviews the literature

discussing fuzzy manipulation. Section three presents the main concepts and definition.

Section four details the main findings of the paper. Finally, section five offers a discussion

and a critique of the social choice model in context of the spatial model, and section 6

concludes the paper.
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2 Previous Attempts at Fuzzy Choice

Fuzzy Choice and Manipulation

Most efforts incorporating fuzzy mathematics into social choice functions start with a fuzzy

preference relation, which is a function ρ : X×X → [0, 1] where X is the set of alternatives.

In words, ρ(x, y) refers to the degree to which x is at least as good as y. If ρ(x, y) = 1, then

x is said to be definitely as least as good as y; if ρ(x, y) = 0, then x is said to be definitely

not as least as good as y. When ρ(x, y) ∈ (0, 1), the preference for x over y is said to be

vague or ambiguous.1 For a set of n actors,N , previous definitions of fuzy choice functions

associates an n-tuple of fuzzy preference relations with one alternative in X [1, 14, 29, 37].

Because a fuzzy preference relation is not directly comparable to a subset of alternatives,

scholars have considered various mechanisms to aggregate individual preference relations into

a social choice. Intitial studies assumed that individuals possess fuzzy preferences but must

make “crisp” individual choices over the set of alternatives, and the choice function associates

a set of alternatives to these crisp choices [14, 29]. Such situations arise when actors, who

possess fuzzy preference relations must vote, “yes” or “no” for an amendment or select only

one candidate among many. Later research aggregates a collection of individual preference

relations into a social preference relation and then associates an alternative with the fuzzy

social preference relation [1]. The following example illustrates the difference between the

two approaches.

Example. Let X = {a, b} and N = {1, 2, 3}. Suppose ρ1(a, b) = .4, ρ2(a, b) = .4, andρ3(a, b) =

.9. In words, ρi is the fuzzy individual preference relation associated with i ∈ N . Futher-

more, suppose reciprocity in preferences, and accordingly, ρi(b, a) = 1− ρi(a, b).

Orlovsky Rule. The Orlovsky [29] rule demonstrates the first approach to fuzzy choice,

where each actor must make a crisp decision. The Orlovsky rule – or a variation of it – is a

function that maps a set of two alternatives into the set {0, 1}, formally, ICi : X → {0, 1}.
1For a more thorough review fuzzy preferences and how they relate to tradition preferences see Orlovsky

[29], Dutta [18], Richardson [33] and Llamazares [23].
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More specifically, let x, y ∈ X and the Orlovsky rule be defined as follows:

ICi(ρi)(x) =






1 if Ri(x, y) > Ri(y, x)

0 else

In words, i votes for, or chooses, x over y if and only if ICi(ρi)(x) = 1 and ICi(ρi(y) =

0. Considering the above example, IC(ρ)(a) = (IC1(ρ1)(a), IC2(ρ2)(a), IC3(ρ3)(a)) =

(0, 0, 1), IC(ρ)(b) = (IC1(ρ1)(b), IC2(ρ2)(b), IC3(ρ3)(b)) = (1, 1, 0), because actors 1 and

2 choose b and actor 1 chooses a. We can tally the votes in any number of ways, but under

majority rule b is the outcome.

Mean Aggregation Rule. The mean aggregation rule is a fuzzy aggregation rule and

demonstrates the second type of fuzzy choice function, where actors need not make crisp

decisions. The mean aggregation rule is defined as follows:

ρS(x, y) =
1

n

n∑

i=1

ρi(x, y)

Using the mean aggregation rule, we can specify the social fuzzy preference relation,

which is ρS(a, b) = .567 and ρS(b, a) = .433. When we use the Orlovsky rule on ρS , the

social choice becomes a because ρS(a, b) > ρS(b, a).

In both conceptualizations, the group only selects one, exact alternative even though the

choice functions are said to be fuzzy. Further, they both return identical results to the G-S

theorem where a choice function is non-manipulable if and only if it is dictatorial[1, 37].

Côrte-Real [14] demonstrates the Orlovsky rule is strategy proof but considers only two

alternatives. Nonetheless, new results may be obtained when considering the fuzzy choice

functions proposed by Dasgupta and Deb [15] and Banerjee [4]. Under their framework,

choice is represented as a fuzzy subset of the set of alternatives, i.e. β : X → [0, 1]. For any

alternative x ∈ X, β(x) denotes the degree to which x is chosen. While the conceptualization

of fuzzy choice has received a great deal of attentiaion in revealed preference theory[20, 21],

the possiblity of manipulating these types of choice functions has yet to be considered.
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Individual Preferences and Manipulation

Before presenting a model of fuzzy choice, a brief discussion on the types of fuzzy individ-

ual preferences is needed. Informally, a choice function is manipulable by an actor if the

actor can unilaterally change the social choice in her favor by submitting an insincere or

false preference. To address this formally, it follows that there exist some mechanism to

compare the social choice with an individual’s preferences. In the exact case, each individ-

ual possesses a transitive ranking of the alternatives and a choice is manipulable if there

exists an individual who can move the social choice further up her ranking. In the fuzzy

case, this mechanism relating individual preferences to the social choice is more complicated.

When comparing individual fuzzy preference relations and an exact social choice, Abdelaziz,

Figueira and Meddeb [1] utilize four different procedures determining whether an individual

prefers one alternative over another, hence four definitions of manipulability. Perote-Peña

and Piggins [31] offer one solution to the problem by considering the manipulation of fuzzy

aggregation rules, where an n-tuple of fuzzy preference relations are aggregated into a sin-

gle social preference relation. While this setup has only confirmed the G-S theorem in the

fuzzy framework (see Duddy, Perote-Peña and Piggins [17] for a general proof), modeling

individual preferences as fuzzy subsets of the set of alternatives rather than fuzzy relations

simplifies the forthcoming analysis.

Further, representing individual preferences in this manner is not completely divoriced

from preference relations. Dasgupta and Deb [15] and Georgecuscu [21] illustrate how fuzzy

subsets can be related to fuzzy preference relations using concepts similar to R-maximality

and R-greatness revealed preference theory (see Suzumura [36] and Sen [35] for reference).

In addition, Clark, Larson, Mordeson, Potter and Wierman [11] discuss several substantive

interpretations of fuzzy subsets of the set of alternatives as representations of individual

preference. For example, let β be a fuzzy subset of X and x ∈ X. When β(x) refers to the

degree to which x is ideal, actors are uncertain how ideal each alternative is; however, the

they are quite certain whether x is better, or preferred to, another alternative y ∈ X.
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3 Fuzzifying Collective Choice

This section details the fuzzy choice framework and introduces the concepts of strategy-

proofness used in the model. Let X be a set of alternatives either finite or infinite. A fuzzy

subset of X, f , is a function f : X → [0, 1]. Let F(X) denote all possible fuzzy subsets of

X. Let N be a finite set of individuals, where N = {1, 2, . . . , n} and n ≥ 2.

Definition 1. (Fuzzy preference function). An individual fuzzy preference function on X

associated with i ∈ N is a function σi : X → [0, 1].

Obviously, σi ∈ F(X). Suppose x ∈ X. Then the literature, σi(x) provides two substantive

interpretations of a fuzzy preference function. First, σi(x) can refer to the degree to which

i ∈ N views x as ideal, where σi(x) = 0 means i believes x is abhorrent and σi(x) = 1 means

i believes x is ideal [28, 11, ?]. Second, σi(x) can also be interpretted as the degree to which

i chooses the alternative x [4, 20, 21]. In this paper, σi(x) is often refered as the choice

instensity of individual i for alternative x. The profile of all individual fuzzy preference

functions can be written as σ = (σ1, σ2, . . . , σn). σ(x) = (σ1(x), σ2(x), . . . , σn(x)) denotes

the restriction of σ to x. A fuzzy choice function then associates a fuzzy subet of X to a

profile of individual fuzzy preference functions.

Definition 2. (Fuzzy choice function). A fuzzy choice function is a function C(σ) :

F(X)n → F(X).

Let C(σ)(x) denote the degree to which the group of individuals, N , chooses x ∈ X given

a specific σ ∈ F(X)n and fuzzy choice funtion C. It is assumed that C(σ) has full range:

for any x ∈ X, there exists a σ ∈ F(X)n such that C(σ)(x) = α, for all α ∈ [0, 1].2 Full

range also guarantees that C is nontrivial, i.e. C(σ) '= c for all σ ∈ F(X)n, where c is some

constant in [0, 1]. In addition, (σN\i, σ′
i) represents the profile of individual preference

functions where (σ1, σ2, . . . , σ′
i, . . . , σn) and (σN\i(x), σi(x)) is the profile’s restriction to

x ∈ X.
2Some authors refer to the full range assumption as citizen sovereignty when preferences are required to

be single-peaked [3].

7



The following definitions characterize several properties of fuzzy choice functions.

Definition 3. (Weakly Paretian). A fuzzy choice function C(σ) is said to be weakly paretian

if for all σ ∈ F(X)n and all x ∈ X,

max
i∈N

(σi(x)) ≥ C(σ)(x) ≥ min
i∈N

(σi(x)).

In words, weak Paretianism guarrantees that the degree to which a fuzzy choice function

selects an alternative is (1) not greater than the choice intensity of the individual who

chooses the alternative to the most intense degree and (2) not less than the choice intensity

of the individual who chooses the alternative to the least intense degree.

Definition 4. (σ-only). A fuzzy choice function C is said to satisfy the σ-only condition if

for all σ, σ′ ∈ F(X)n and all x ∈ X such that σi(x) = σ′
i(x) for all i ∈ N ,

C(σ)(x) = C(σ′)(x).

In words, the σ-only condition guarrantees that the degree to which a fuzzy choice

function for all x ∈ X is independent of the choice intensities assigned to other alternatives.

Definition 5. (Monotonic). A fuzzy choice function C is said to be monotonic if, for all

x ∈ X, all σ ∈ F(X)n, and all σ′
i ∈ F(X),

σi(x) ≤ σ′
i(x), ∀i ∈ N =⇒ C(σ)(x) ≤ C(σN\i, σ

′
i)(x)

Monotonicity requires that increasing the degree to which individuals choose a specific

alternative will not decrease the degree of social choice for that alternative.

Definition 6. (Manipulable). A fuzzy choice function C is manipulable if there exixts

x ∈ X, σ ∈ F(X)n, i ∈ N and σ′
i ∈ F(X) such that
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(1) C(σ)(x) < σi(x) ⇒ C(σ)(x) < C(σN\i, σ
′
i)(x)

(2) C(σ)(x) > σi(x) ⇒ C(σ)(x) > C(σN\i, σ
′
i)(x)

According to definition 6, a fuzzy choice function is manipulable if an individual i ∈ N

is able to move the degree of social choice for an alternative in the direction of her sincere

choice intesnity of that alternative by submitting a false preference for x.

Definition 7. (Strategy-Proof (SP)). A fuzzy choice function C is said to be strategy-proof

if it is not manipulable.

Example. Let σ ∈ F(X)n and let C be a fuzzy choice function. Suppose for some x ∈ X

there exists an i ∈ N such that σi(x) = .4. Suppose C(σ)(x) = .3 and for all σ′
i ∈ F(X),

C(σN\i, σ
′
i)(x) = .9. Hence, C is manipulable by definition 6 even though |σi(x)−C(σ)(x)| <

|σi(x)− C(σN\i, σ
′
i)(x)|.

The preceeding example begs the question is a fuzzy choice function manipulable even

when it over corrects, of sorts, for manipulation? More specifically, it illustrates a situation

where, given Euclidean preferences over the range of the choice function, a fuzzy choice

function is manipulable even though the choice function produces an output further away

from i’s ideal choice instensity when manipulated. Because of this, some authors define SP

in the following context [31].

Definition 8. (Strategy-Proof ’) A fuzzy choice function C is strategy-proof if for all x ∈ X,

all σ ∈ F(X)n and all i ∈ N the following hold for all σ′
i ∈ F(X):

(1) C(σ)(x) < σi(x) ⇒ C(σ)(x) ≥ C(σN\i, σ
′
i)(x)

(2) C(σ)(x) > σi(x) ⇒ C(σ)(x) ≤ C(σN\i, σ
′
i)(x)
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In words, definition 9 guarrantees that when an individual i submits a false preference

profile, σi, the resulting social choice is “at least as far away” from the original social choice

when every individual submits his or her true preference. Hence, individual i has no incentive

manipulate the social choice. However, in a formal context, definition 9 and definition 8 are

equivalent.

Proposition 9. Strategy-poofness under definition 8 and strategy-proofness under definition

9 are equivalent.

Proof. Def. 8 =⇒ Def. 9. Let C be a choice function that is strategy-proof under definition

8. Let σ ∈ F(X)n, x ∈ X and i ∈ N such that C(σ)(x) < σi(x). Because C is strategy-proof

under definition 8, there does not exist σ′
i ∈ F(X) such that C(σ)(x) < C(σN\i, σ

′
i)(x).

Thus, for all σ′
i ∈ F(X), C(σ)(x) ≥ C(σN\i, σ

′
i)(x). An symmetrical argument can be made

for C(σ)(x) > σi(x). Because σ ∈ F(X)n, x ∈ X and i ∈ N are arbitrary, strategy-poofness

under definition 8 implies strategy-proofness under definition 9.

Def. 9 =⇒ Def. 8. Let C be a choice function that is strategy-proof under definition

9. Let σ ∈ F(X)n, x ∈ X and i ∈ N such that C(σ)(x) < σi(x). Because C is strategy-

proof under definition 9, for all σ′
i ∈ F(X), C(σ)(x) ≥ C(σN\i, σ

′
i)(x). Then there does not

exist a σ′
i ∈ F(X) such that C(σ)(x) < C(σN\i, σ

′
i)(x). A symmetrical argument holds for

C(σ)(x) > σi(x). Thus, C is strategy-proof under definition 8.

4 Findings

This section details the main findings of the paper. To characterize the properties of fuzzy

choice functions, the following formal arguments utilize several reinterpretations of the piv-

otal voter theorem presented in Reny [32].

Proposition 10. If a fuzzy choice function C is strategy-proof, then it satisfies the σ-only

condition.

Proof. Assume C is SP. Now suppose C is not σ-only. This proof will show that this leads
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to a contradiction. By the assumption, there exists σ, σ′ ∈ F(X)n and an x ∈ X such that

σ(x) = σ′(x) and C(σ)(x) '= C(σ′)(x).

There are two cases for consideration. Now construct the following profile of individual

preferences Z = {z0, z1, ..., zk, ..., zn} such that the following hold:

z0 = (σ1, ..., σi, ..., σn)

z1 = (σ′
1, ..., σi, ..., σn)

...

zi = (σ′
1, ..., σ′

i, ..., σn)

...

zn = (σ′
1, ..., σ′

i, ..., σ′
n),

where zi,j signifies σj ∈ zi and zi\i denotes zi\{σi}. It is apparent that there exist

some zi−1, zi ∈ Z such that C(zi−1)(x) = C(σ)(x) and C(zi)(x) '= C(σ)(x). Without loss of

generality, suppose this occurs at i = 2. This proof will show that i = 2 can manipulate C

at z1 and z2. Now there are two cases to consider.

Case 1. C(z1)(x) < C(z2)(x). First, suppose σ2(x) < C(z2)(x). Here, C(z2)(x) > C(z2\2, z1,2) =

C(z1)(x). Thus, i = 2 can manipulate C at z2 by submitting z1,2 rather than z2,2. Second,

suppose σ2(x) ≥ C(z2)(x). Because C(z1)(x) < C(z2)(x), then σ2(x) > C(z1)(x). However,

C(z1)(x) < C(z1\2, z2,2) = C(z2)(x). Thus, i = 2 can manipulate C at z1 by submitting z2,2

rather than z1,2. This is a contradiction. Hence, C(z1)(x) ≥ C(z2)(x).

Case 2. C(z1)(x) > C(z2)(x). First, suppose σ2(x) < C(z1)(x). Here, C(z1)(x) > C(z1\2.z2,2) =

C(z2)(x). Thus, i = 2 can manipulate C at z1 by submitting z2,2 rather than z1,2. Sec-

ond, suppose σ2(x) ≥ C(z1)(x). Because C(z1)(x) > C(z2)(x), then σ2(x) > C(z2)(x).

However, C(z2)(x) < C(z2\2, z1,2)(x) = C(z2)(x), which is another contradiction. Hence,

C(z1)(x) = C(z2)(x).
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The above argument can be replicated for any i ∈ N . Thus, for any zi, zj ∈ Z, C(zi)(x) =

C(zj)(x). Accordingly, C(σ)(x) = C(z0)(x) = C(zn)(x) = C(σ′)(x). Hence, C satisfies the

σ-only condition.

Proposition 11. If a fuzzy choice function C is strategy-proof, then it is weakly Paretian.

Proof. Assume C is strategy-proof. Now, suppose C is not weakly Paretian. This proof will

show that this leads to a contradiction.There are two cases for consideration.

Case 1. Suppose there exists x ∈ X and σ ∈ F(X)n such that C(σ)(x) < min
i∈N

(σi(x)). By

full range, we know there also exists a σ′ ∈ F(X)n such that C(σ′)(x) ≥ min
i∈N

(σ′
i(x)). Now

construct a vector of profiles Z = (z0, z1, ..., zi, ..., zn) such that

z0 = (σ1(x), ..., σi(x), ..., σn(x))

z1 = (σ′
1(x), ..., σi(x), ..., σn(x))

...

zi = (σ′
1(x), ..., σ′

i(x), ..., σn(x))

...

zn = (σ′
1(x), ..., σ′

i(x), ..., σ′
n(x)),

where zi,j signifies σj ∈ zi and zi\i denotes zi\{σi}. It is obvious that there exists zi−1, zi ∈

Z such that C(zi−1)(x) < C(zi)(x). Suppose σi(x) > C(zi−1)(x). Then C(zi−1)(x) <

C(zi−1\i, zi,i)(x) = C(zi)(x). Thus, i can manipulation C at (zi−1) by submitting zi,i rather

than zi−1,i. Now suppose σi(x) ≤ C(zi−1)(x), then σi(x) < C(zi)(x). However, C(zi)(x) >

C(zi\i, zi−1,i)(x) = C(zi−1)(x). Thus, i can manipulate C at (zi) by submitting zi−1,i rather

than zi,i. This is a contradiction.

Case 2. Suppose there exists x ∈ X and σ ∈ F(X)n such that C(σ)(x) > max
i∈N

(σi(x)). By

full range, we know there also exists a σ′ ∈ F(X)n such that C(σ′)(x) ≤ max
i∈N

(σ′
i(x)). Now

construct a vector of profiles Z = (z0, z1, ..., zi, ..., zn) in a manner detailed above. Likewise,
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there exists zi−1, zi ∈ Z such that C(zi−1)(x) > C(zi)(x). Suppose σi(x) < C(zi−1)(x). Then

C(zi−1)(x) > C(zi−1\i, zi,i) = C(zi)(x). Thus, i can manipulate C at (zi−1) by submitting

zi,i rather than zi−1,i. Now suppose σi(x) ≥ C(zi−1)(x), then σi(x) > C(zi)(x). However,

C(zi)(x) < C(zi\i, zi−1,i)(x) = C(zi−1)(x), another contradiction.

Hence, max
i∈N

(σi(x)) ≥ C(σ)(x) ≥ min
i∈N

(σi(x)), C is weakly Paretian.

Corollary 12. If a fuzzy choice function C is strategy-proof but does not satisfy full range

then it does not satisfy weak Paretianism.

Proof. An example will suffice. Suppose, for all x ∈ X and all σ ∈ F(X)n, C(σ)(x) = c. In

this case, C is strategy-proof but is not weakly Paretian if c < σi(x) for all i ∈ N .

Together, proposition 10 and corollary 11 demonstrate the equivalence of weak Pare-

tianism and full range under strategy-proof choice functions. The next proposition and its

subsequent corollary highlight the relationship between strategy-proofness and monotonic-

ity.

Proposition 13. If a fuzzy choice function C is strategy-proof, then it is monotonic.

Proof. Assume C is SP. Now suppose C is not monotonic. This proof will illustrate that

this leads to a contradiction. Because C is not monotonic, there exists an x ∈ X and

σ, σ′ ∈ F(X)n such that σi(x) ≤ σ′
i(x), for all i ∈ N , and C(σ)(x) > C(σ′)(x). Because

σ '= σ′, there exists at least one i ∈ N such that σi(x) < σ′
i(x). Now construct the following

vector of profiles Z = (z0, z1, ..., zi, ..., zn) such that
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z0 = (σ1(x), ..., σi(x), ..., σn(x))

z1 = (σ′
1(x), ..., σi(x), ..., σn(x))

...

zi = (σ′
1(x), ..., σ

′
i(x), ..., σn(x))

...

zn = (σ′
1(x), ..., σ

′
i(x), ..., σ

′
n(x)),

where zi,j denotes σj(x) ∈ zi. Now, there exists a Z ′ ⊆ Z such that zi ∈ Z ′ if and only if

σi(x) > σ′
i(x) for all i ∈ N . For some zi ∈ Z ′, it is obvious that C(zi)(x) < C(zi−1)(x), where

zi−1 is not necessarily in Z ′. The proof now shows that i can manipulate C with two cases.

First suppose σi(x) > C(zi)(x). Then, C(zi)(x) < C(zi\i, zi−1,i), then i can manipulate C

at zi by submitting zi−1,i rather than zi,i. Second suppose σi(x) ≤ C(zi)(x). Then by

assumption, σi(x) < C(zi−1)(x), and C(zi−1)(x) > C(zi−1\i, zi,i). Thus, i can manipulate C

at zi−1 by submitting zi,i rather than zi−1,i.

Proposition 11 demonstrates that strategy-proofness is sufficient for a monotonicity.

However, previous research in crisp preference relations has shown that strategy-proofness

is necessary and sufficient [27]. This is does not hold in the fuzzy framework as the following

corollary demonstrates.

Corollary 14. Montonicity does not imply strategy-proofness.

Proof. A counter example will suffice. For any x ∈ X and any σ ∈ F(X)n, let C(σ)(x) =(
1

n

) ∑
∀i∈N

σi(x). It is easy to verify that C is a monotonic choice function. Now let x ∈ X and

suppose N = {1, 2, 3} and σ(x) = (.4, .1, .6). In this case, C(σ)(x) = 1
3 (.4+ .1+ .6) = .367.

Obviously, some i ∈ {1, 3} could manipulate C with some σ′
i(x) > σi(x).

The following defintion is necessary to characterize the domain of strategy-proof choice
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functions. The proceeding argument applies the same logic as Moulin [26].

Definition 15. (Augmented median rule). Let M : F(X)n → F(X) be a fuzzy choice

function defined as follows:

M(σ)(x) = med(p1, ..., pn−1, σ1(x), ..., σn(x))

where ∀pi ∈ [0, 1].3

{p1, ..., pn−1} is a set of predefined phantom alternatives that serve two purposes. First,

it allows M(σ) to be generalized to any type of rank-selecting function such as minimum

or maximum. Second, the set also ensures an odd number of alternatives thereby ensuring

that the a median can always be selected.

Lemma 16. M(σ) is a strategy-proof fuzzy choice function.

Proof. Assume M(σ) is defined as given above. Suppose M(σ) is not strategy-proof. This

leads to a contradiction.

There are two cases to cosider. First, let x ∈ X, i ∈ N and σ ∈ F(X). Suppose

σi(x) < M(σ)(x). Then there exists a σ′ ∈ F(X) such that M(σ)(x) > M(σN\i, σ
′
i). For

clarity, let M(σ)(x) = a and M(σN\i, σ
′
i) = b. Obviously, a '= b and a > b.

Note that a ∈ {p1, ..., pn−1, σ1(x), ..., σi(x), ..., σn(x)}. Because σi(x) < a, σ′(x) '≤ σ(x),

else med(p1, ..., pn−1, σ1(x), ..., σi(x), ..., σn(x)) = med(p1, ..., pn−1, σ1(x), ..., σ′
i(x), ..., σn(x)).

Thus, σ′
i(x) > σ(x). This implies then b = med(p1, ..., pn−1, σ1(x), ..., σ′

i(x), ..., σn(x)) ≥ a

. However, M(σN\i, σ
′
i) = b and a > b. This is a contradiction.

Second, suppose σi(x) > M(σ)(x). Then there exists a σ′ ∈ F(X) such that M(σ)(x) <

M(σN\i, σ
′
i). Again, let M(σ)(x) = a and M(σN\i, σ

′
i) = b. Obviously, a '= b and a <

b. Because σi(x) > a, σ′(x) '≥ σ(x), else med(p1, ..., pn−1, σ1(x), ..., σi(x), ..., σn(x)) =

med(p1, ..., pn−1, σ1(x), ..., σ′
i(x), ..., σn(x)). Thus, σ′

i(x) < σ(x). However, as before, b =

3Several studies characterize the augmented median rule using {p1, ..., pn+1} [3, 5, 26]. In this case,
however, by setting p1 = 0 and pn+1 = 1, the rule can be more succinctly written using n− 1 alternatives.
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med(p1, ..., pn−1, σ1(x), ..., σ′
i(x), ..., σn(x)) ≤ a, a contradiction. The desired result now

follows.

In words, proposition 14 demonstrates that if i ∈ N attempts to manipulate the value of

M(σ)(x) with σ′
i, one of two events will happen. Either the new manipulated social choice

will be identical to the original social choice or the new manipulated social choice will move

further away from i’s ideal social intensity for x ∈ X. Hence, i ∈ N will not be better off

by reporting any σ′
i '= σi.

The paper’s theorem that C(σ) is strategy-proof if and only if C(σ) = M(σ) follows the

logic in Ching [9] and makes use of the following lemma.

Lemma 17. Let σ̄i(x) = 1 and σi(x) = 0 for all x ∈ X and all i ∈ N . A fuzzy choice

function C is strategy-proof if and only if, for all σ ∈ F(X)n, all x ∈ X and all i ∈ N , the

following holds:

C(σ)(x) = med{σi(x), C(σN\i, σi)(x), C(σN\i, σ̄i)(x)}

Proof. Suppose C is a strategy-proof fuzzy choice function. Let σ ∈ F(X)n and x ∈ X. By

monotonicty and proposition 13, C(σN\i, σ̄i)(x) ≥ C(σN\i, σi)(x). There are three cases to

consider to prove the relationship.

First, suppose σi(x) ∈ (C(σN\i, σi)(x), C(σN\i, σ̄i)(x)). Further, suppose C(σ)(x) <

σi(x), then i can submit σ̄i(x) where C(σN\i, σ̄i)(x) > σi(x) > C(σ)(x). Thus, C(σ)(x) <

C(σN\i, σ̄i)(x), and C is manipulable, a contradiction. Now suppose C(σ)(x) > σi(x). Simi-

larily, C(σN\i, σi)(x) < σi(x) < C(σ)(x). Because C(σN\i, σi)(x) < C(σ)(x), C is manipula-

ble, a contradiction. Hence C(σ)(x) = σi(x) when σi(x) ∈ (C(σN\i, σi)(x), C(σN\i, σ̄i)(x)).

Second, suppose σi(x) ≤ C(σN\i, σi)(x). To see that C(σ)(x) = C(σN\i, σi)(x), suppose

C(σ)(x) < C(σN\i, σi)(x). Then σi(x) ≤ C(σ)(x) < C(σN\i, σi)(x). In this case, i can

manipulate C at (σN\i, σi) by submitting σi rather than σi, a contradition. Likewise, suppose

C(σ)(x) > C(σN\i, σi)(x) ≥ σi(x). Now, i can manipulate C at σ by submitting σi rather

than σi. Hence, C(σ)(x) = C(σN\i, σi)(x) when σi(x) ≤ C(σN\i, σi)(x).
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Third, suppose σi(x) ≥ C(σN\i, σi)(x) and C(σ)(x) > C(σN\i, σi)(x). Then σ̄i(x) ≥

C(σ)(x) > C(σN\i, σi)(x), where i can manipulate C at (σN\i, σi) by submitting σi rather

than σ̄i. Now suppose C(σ)(x) < C(σN\i, σi)(x). Then C(σ)(x) < C(σN\i, σi)(x) ≤

σi(x), and i can manipulate C at σ by submitting σ̄i rather than σi. Hence, C(σ)(x) =

C(σN\i, σ̄i)(x) when σi(x) ≥ C(σN\i, σi)(x).

The preceding arguments prove that if a fuzzy choice function C is strategy-proof, then

C(σ)(x) = med{σi(x), C(σN\i, σi)(x), C(σN\i, σ̄i)(x)}. Sufficiency is easily obtained from a

argument similar to the one in lemma 16.

Theorem 18. Any fuzzy collective choice function C is strategy-proof if and only if it is a

fuzzy augmented median voter rule.

Proof. Once we have established that strategy-proofness implies σ-only (proposition 10)

and the relationship in lemma 17, necessity follows from Ching [9]. Sufficieny follows from

lemma 16.

5 Implications for the Spatial Model

Lemma 17 and theorem 18 illustrate that a fuzzy choice function is strategy-proof if and

only if it is a form of the fuzzy augmented median rule from definition 15. Further, in

contrast to previous results using traditional preference relations, this relationship holds

without restricting the domain of individaul preferences, F(X)n. While the representation

of an individual’s preferences with the σi function clearly produces a transitive preference

relations Ri, where xRiy ⇐⇒ σi(x) ≥ σi(y), the use of the σi creates substantive differences

between the structure of traditional and fuzzy strategy-proof choice functions The reason

these differences emerge is the group of individuals are no longer deciding what alternative

to select but rather deciding the degree to which the group chooses each alternative.

To illustrate the these difference, the model presented in section 3 can be applied to the

spatial model, where the set of alternatives X becomes of subset of k-dimensional Euclidean
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space or Rk. When k = 1, σi can be presented by a traditional fuzzy number, i.e. σi : R1 →

[0, 1], which has a similar defintion to a fuzzy subset. Further, it is often assumed that σi

is normal, which requires that there exists x ∈ X such that σi(x) = 1. In words, normality

ensures that every actor views at least one alternative as ideal. While the condition seems

innocuous and strongly related to the standard assumptions of spatial models, it is not

necessary.

Figure 1 illustrates an three player fuzzy preference profile where each σi is represented

by a normal fuzzy number in one-dimensional space. It is obvious that the fuzzy number

representation allow for greater variation in individual preferences that a traditional single-

peaked profile. In this example, not only are the fuzzy preferences able to capute the

single-plateau characteristics of concern to some scholars [7, 10, 25], but they also allow

for non-single-peaked preferences (player 2), which is one substantive difference between

exact and fuzzy choice. Further, the shaded areas show the social choice induced by the

fuzzy median rule. To see that the social choice is indeed strategy proof even with non-

single-peaked preferences, consider x1 ∈ X. Here, σ1(x1) > 0, σ2(x1) = 0, and σ3(x1) = 0.

Regardless of any σ′
1 ∈ F(X) and any possible values of σ′

1(x1), M(σ)(x1) = 0. In addition,

consider x2 ∈ X, where σ1(x2) < M(σ)(x2), σ2(x2) > M(σ)(x2), and σ3(x2) = M(σ)(x2).

Similarily, player 1 cannot manipulate the fuzzy choice for x2. For any σ′
1 ∈ F(X) and any

specific value of σ′
1(x2), M(σN\1, σ

′
1)(x2) ≥ M(σ)(x2). Thus, player 1 can only move the

degree of social choice further away from her truthful preference for x2.

When working in multidimensional space, the framework of the σi function remains

largely the same, where σi : Rk → [0, 1]. When k = 2, we are interested in fuzzy subsets

where every element in the image of σi except {0}, denoted Im(σi)\{0}, is the interior and

boundary of a simple closed curve. A simple closed curve is a curve for which there is a

one-to-one continuous function of the unit circle onto it. In addition, a simple closed curve

has an interiour that is bounded and an exterior, but there is no need for the curve to

be convex. Finally, we can restrict σi in particular way such that, for all t ∈ Im(σi)\{0},

{x ∈ X | σi(x) = t} forms a compact set.
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Figure 1: Three-player example of the fuzzy median rule in one-dimensional space

Figure 2 presents a three player fuzzy preference profile in two-dimensional space, and the

σi function becomes a third dimension perpendicular to both the X and Y policy dimensions.

In this case, Im(σi) = {0, .25, .5, .75, 1.0}, where σi(x) = 1 can be represented by individual

i’s inner-most indifference circe and σi(x) = 0 signifies the area outside i’s outer-most

indifference circle. When fuzzy preferences are constructed in this manner, they are similar

to a Likert scale. As in the previous example, the shaded gray areas show the social choice

induced by the fuzzy median rule, and darker areas represent a more intense social choice.

Unlike the exact case, the fuzzy median rule remains strategy-proof in two-dimensional

without using the dimenson-by-dimenson median rule.

Finally, another substantive difference occurs when no players have intersecting σi func-

tions. When this happens, M(σ)(x) = 0 for all x ∈ X, and the group of playes rejects all

possible alternatives. In this case, it is unclear as to what the social choice is. In the tra-

ditional appraoch, a choice function associates an alternative to all possible combination of

individual preferences. However, in the fuzzy case when the choice function is designating a

social choice intensity to each alternative, it is possible that a strategy-proof choice function

assigns a zero intensity to all alternatives. This is not necessarily a misrepresentation of the
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Figure 2: Fuzzy median rule in two-dimensional space

original intention of strategy-proof choice functions if rejecting all alternatives is some type

of social choice.

6 Conclusion

This paper proposed a framework for charaterizing strategy-proof fuzzy choice functions

in which individual preferences and the social choice are represented by fuzzy subsets of

the set of alternatives. Essentially, actors are deciding to what degree the group chooses

each alternative rather than choosing a specific alternative, which is the approach taken in

previous studies of both exact and fuzzy social choice. Similar to previous results, strategy-

proof fuzzy choice functions satisfy conditions of σ-only, weak Paretianism and monotonicity.

In addition, theorem 18 demonstrates a fuzzy choice function is strategy-proof if and only if it

is the fuzzy augmented median voter theorem. Unlike previous results, strategy-proof choice

functions do not require any restrictions on the consistency of individual preferences or the

dimensionality of the alternative space. In fact, section 5 illustrates strategy-proof fuzzy
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choice when individuals have multi-peaked preferences on a single dimension of alternatives

and when the set of alternatives is multidimensional. The results speak to recent debates

about the possibility of strategic manipulation of exact choice fucntions with single-peaked

preferences. They suggest that when social choice selects alternatives to various degrees

there exists strategy-proof choice functions that do not require restrictions on individuals’

preferences.
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